

Enhanced Storm Investigation - 2015

National Weather Service Milwaukee/Sullivan, WI

www.weather.gov/mkx

www.facebook.com/NWSMilwaukee

twitter.com/NWSMKX

Convection Basics

- Moisture
- Instability
- Lift
- Wind Shear (for severe storms)

"Triggering" Mechanisms

- Can initiate thunderstorms....
 - Low pressure systems/Jets
 - Air mass boundaries, Fronts
 - Sea/Lake Breeze
 - Thunderstorm 'outflow boundaries'
 - Orographic lift

Thunderstorm Outflow Boundaries

Four Types of Thunderstorms

Single Cell Multicell Cluster

Multicell Line

Supercell

Weak updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Intense updraft (Always severe)

Mesocyclone - Rotating updraft

Slight threat

Moderate threat

Moderate threat

High threat

Single Cell Storms

May produce brief severe weather

Thunderstorm Life Cycle

Downburst Winds

shelf cloud

Downburst Winds

Multi-Cell Thunderstorms

Ordinary, non-organized storms with low severe threat

Each cell lasts 20-30 minutes, but a cluster can last for hours

Heavy rain is the main problem

Strong winds, small hail and weak tornadoes are possible

Multi-Cell Thunderstorms

Ordinary, non-organized storms with low severe threat

Straight-Line Wind Event Kenosha, June 30, 2011

Straight-Line Wind Event Kenosha, June 30, 2011

Multi-Cell (Squall) Line

- Leading edge of squall line usually marked by shelf cloud
- Do not report shelf clouds

What to expect

- Strong and possibly damaging wind
- Heavy rain/hail

Squall Line - Bow Echo

This shelf cloud is ahead of bow echo on right

Storm moving left to right (W-E)

Well-developed shelf cloud is found on front side of line

Shelf Cloud

Video

August 13, 2011 Indiana State Fair

Supercell Thunderstorm

- Contains a rotating updraft called a mesocyclone
- Only about 10% of radar-detected meso's are associated with a tornado
- Produce large hail, high winds, and strong to violent tornadoes
- Can last for several hours

Supercell Structure

Rotation in Updraft Tower

Evaluating the Surroundings

A thick, crisp anvil (knuckles) is another sign of a strong updraft

Hard-crisp appearance is indication of a rapidly, intensifying storm!

Storm Strength Clues

Rotating Wall Clouds

An isolated lowering of the rain-free base, rotating on a vertical axis

A good number of, but not all, tornadoes develop underneath or near a rotating wall cloud

Rotating Wall Cloud

Tornadic Supercell Thunderstorm top-down view

Radar Loops

Base Reflectivity

Storm Relative Velocity

May 20, 2013 Moore, OK

Tornado

Ratings & Types of Tornadoes

- Enhanced Fujita Scale (EF 0 to EF 5)
- Classic, Wedge, and Rope
- Injuries & fatalities can occur with each type.
- NWS does NOT need to know what type of tornado you are observing.

Enhanced Fujita Scale

Rating Tornadoes

EF 0 65-85 mph

EF 1 86-110 mph

EF 2 111-135 mph

EF 3 | 136-165 mph

EF 4 166-200 mph

EF 5 Over 200 mph

Relative Frequency

53.5% (weak)

31.6% (weak)

10.7% (strong)

3.4% (strong)

0.75% (violent)

<0.1% (violent)

Tornado

Note – condensation funnel not touching ground Video

Wisconsin Tornado Stats

- Most tornadoes spin up between 3 pm and 9 pm, with 6-7 pm being the busiest.
- Most tornadoes occur between April and September, with June being the peak month.
- Tornadoes generally move southwest to northeast, but west to east, and northwest to southeast movements are quite possible.

Personal Safety

Video

This was a weak tornado – what about a strong or violent tornado?

Personal Safety

NWS does not encourage storm chasing.

How Radar Works

How Radar Works

Radar Sampling Patterns

70 19.5 14.6 9.9 6.0

4.3

50

50

50

10

0

20

40

60

80

100

120

Range (mi.)

Clear Air Mode ~ 2 min per elevation

Appleton Sheboygan Dam Walkee

10 minutes

Precip Mode ~ 1 min per elevation

5 - 6 minutes

Storm Mode ~ 30 sec per elevation

 $4 - 5 \min \rightarrow 2 - 3 \min$

Radar Velocity

Radar Velocity Interpretation

Green: <u>Toward</u> the radar

Red: <u>Away</u> from the radar

GOES - R

- First satellite launch set for March 2016
- Significant improvements in detection and observation of environmental phenomena
 - Higher resolution, more frequent satellite images
 - Lightning Mapper maps total lightning (in-cloud and cloud to ground) activity continuously 24/7
 - Increased lightning information results in potential for improvement in tornado warning lead time

www.goes-r.gov

El Reno Tornado

- National Weather Radar Testbed (NWRT)
 Phased Array Radar
 - May 31, 2013
 - 1-minute resolution depicts the fluid motion of supercell development
 - Path along the Interstate

www.nssl.noaa.gov/tools/radar/mpar

Warn-on-Forecast

- Currently, warning process based upon warn-on-detection approach
- Reaching a plateau in lead time
- Ensemble of storm-scale numerical weather prediction models
- Probabilistic hazard guidance

www.nssl.noaa.gov/projects/wof

Warn-on-Forecast

www.nssl.noaa.gov/projects/wof

The End

Questions?

